PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Discrete Structures	(210104)	Paper:	Final Exam (A)
Discrete Mathematic	s (210242)	Date:	7 February 2007
Discrete Mathematic	s (250151)	Name:	

Part One Each problem is worth 2.5 points.

1)	Which proposition is a tautology?(a) $p \rightarrow (p \lor q)$ (b) $p \rightarrow (p \land q)$ (c) $p \rightarrow \neg p$ (d) $(p \rightarrow p) \rightarrow (q \land \neg q)$
2)	Which proposition is false?(a) $\forall x \exists y (x + y = y)$ (b) $\exists x \forall y (x + y = y)$ (c) $\exists x \forall y (xy = y)$ (d) $\forall x \exists y (xy = y)$
3)	Convert the decimal number 234 to octal. (a) 376 (b) 378 (c) 352 (d) 355
4)	Evaluate GCD(234, 432). (a) 0 (b) 6 (c) 16 (d) 18
5)	Suppose $A \subseteq B$. Which of the following must be true? (a) $A \oplus B = \phi$ (b) $A - B = B - A$ (c) $(A \oplus B) - A = B$ (d) $(A \cap B) - B = \phi$
6)	Suppose S = 8. How many subsets of S contain more than 5 elements? (a) 56 (b) 93 (c) 37 (d) 28
7)	Let A = $\{2, 4, 5, 10\}$. Which relation R is an equivalence relation? (a) R = $\{(a,b) \mid a \mod 2 = b \mod 2\}$ (b) R = $\{(a,b) \mid a \mod 2 \neq b \mod 2\}$ (c) R = $\{(a,b) \mid a \mod b = 0\}$ (d) R = $\{(a,b) \mid a \mod b = 2\}$
8)	Which is the transitive closure of the relation given by $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$?
	(a) $ \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} $ (b) $ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} $ (c) $ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$
9)	A complete graph has 36 edges. What is the number of points (vertices)? (a) 9 (b) 8 (c) 5 (d) 6
10)	A graph has degree sequence 0, 2, 1, 3, 1, 1, 4. Find its degree. (a) 40 (b) 46 (c) 48 (d) 12

11)	1) Convert the incidence matrix							<	1 (0 1 0 (0 1	0 0 1 1 0 1 1 0	$ \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} $ to adjacency matrix.									
(a)	$\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$	0 0 1 2	0 1 0 0	$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$	(b)	$\begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}$	0 1 0 1	0 0 1 0	2 1 0 0]	(c)	$\begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}$	0 0 1 1	0 1 0 0	2 1 0 0]	(d)	$\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$	0 0 2 1	0 2 0 1	1 1 1 0	
12)	For (a) p	the clan	gra ar, i	ph k not i	<2,5 w Euler	/hicł patł	า of า	the	foll	owing (b)	g is t plar	true har a	? and	Eule	er pat	h				

Part Two Each problem is worth 5 points

(c) not planar, not Euler path

13) How many permutations using the letters {A, C, E, M, N, S, T} which do not contain the word CATS or the word MEN?

(d) Euler path, not planar

- 14) Let $A = \{2, 4, 6, 24, 36\}$ and $R = \{(a,b) | a \text{ divides } b\}$. Find the elements of R and draw the Hasse diagram.
- 15) For the labeled binary tree find the output using (a) pre-order (b) post-order (c) in-order traversal algorithm.

16) For the weighted graph find a minimum spanning tree and calculate its sum.

--Amin Witno