

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A DISCRETE STRUCTURES

26-12-2006

Part 1 Each problem is worth 2 points. Circle one answer.

1)	A sequence satisfies the rect with $f(0) = 1$ and $f(1) = 4$. Find a) $2^n + n (-2)^n$ c) $2^n + n (2^n)$			urr Ida b) d)	urrence relation $f(n) = 4 f(n-1) - 4 f(n-2)$ d an explicit formula for $f(n)$. b) $2^n + 2n (-2)^n$ d) $2^n + 2n (2^n)$				
2)	Suppose A ⊆ a) B – A	B. Then A b) A – B	⊕B	8 = c)	= c) A ∩ B			d) A ∪ B	
3)	There are 6 chapters in Discrete Mathematics. What is the minimum numb of questions in the exam so that at least 13 come from the same chapter? a) 67 b) 78 c) 73 d) 72								
4)	How many dif multiset {A, B a) 840	ferent perm , C, C, B, B b) 420	nuta 5, A}	tioi ? c)	tions can be fo ? c) 105			formed using the elements of the d) 210	
5)	An equivalence Find the equival a) {1, 2, 3, 5}, c) {1, 3, 4}, {2	valence clas {4} , 5}	s re 1 0 1 0 sse	pre 0 1 0 1 5. b) d)	esser 1 0 1 0 0) {1,) {1,	ntec 0 0 1 0 3}, 3,	0 1 0 0 1 4},	y the following zero-one matrix. , 5}, {4} {2}, {5}	
	-				•.				

Part 2 This part is worth 10 points. Write complete solutions for full credit.

- 6) Let A = {1, 2, 3, 4}. Give an example of R ⊆ A x A with the given properties.
 a) reflexive (F) symmetric (T) anti-symmetric (F) transitive (T)
 b) reflexive (F) symmetric (F) anti-symmetric (F) transitive (F)
- 7) How many positive integers \leq 500 which are not multiples of 6 or 9 or 15?
- 8) Let A = {2, 4, 8, 12, 24} and R = {(a, b) | a divides b} ⊆ A x A.
 a) Find the elements of R and draw the digraph.
 b) Prove that R is a partial order relation and draw the Hasse diagram.