PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

First Exam A

DISCRETE STRUCTURES
26-11-2006
Part 1 Each problem is worth 2 points. Circle one answer.

1) Convert the proposition $p \oplus q$ to $D N F$.
a) $(p \wedge \neg q) \vee(\neg p \wedge \neg q)$
b) $(p \wedge \neg q) \vee(\neg p \wedge q)$
c) $(p \wedge q) \vee(\neg p \wedge \neg q)$
d) $(p \wedge q) \vee(\neg p \wedge q)$
2) Which proposition is a contradiction?
a) $p \rightarrow p$
b) $(p \wedge q) \rightarrow p$
c) $p \oplus p$
d) $(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{p}$
3) Which proposition is false?
a) $\exists x \exists y(x y=1)$
b) $\forall x \exists y(x y=1)$
c) $\exists x \forall y(x y=0)$
d) $\forall x \exists y(x y=0)$
4) Evaluate $\operatorname{GCD}(361,144)$.
a) 0
b) 1
c) 2
d) 3
5) Convert the decimal number 2006 to hexadecimal.
a) 7D6
b) 7EA
c) 8 F 6
d) 8 A 2
6) Which quantity is the largest?
a) $100 \bmod 9$
b) $100 \bmod 25$
c) $22 \bmod 3$
d) $22 \bmod 19$
7) "If x^{3} is even then x is even". To prove this by contrapositive we start with
a) x^{3} is odd
b) x is odd
c) x^{3} is even
d) x is even

Part 2 Each problem is worth 3 points. Write complete solution.
8) Is this argument valid?

Premise 1 If today is Friday then tomorrow is Sunday.
Premise 2 Tomorrow is not Sunday.
Conclusion Today is not Friday.
9) Prove by mathematical induction for all integer $\mathrm{n} \geq 1$.
$1+8+64+\ldots+8^{n-1}=\frac{8^{n}-1}{7}$

