

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

First Exam A DISCRETE STRUCTURES

26-11-2006

Part 1 Each problem is worth 2 points. Circle one answer.

1)	Convert the pr a) $(p \land \neg q) \lor$ c) $(p \land q) \lor (-1)$	n p⊕ ₁q))	q to DI	IF. b) (p ∧ ¬q) ∨ (¬p ∧ q) d) (p ∧ q) ∨ (¬p ∧ q)				
2)	Which proposition is a a) $p \rightarrow p$ c) $p \oplus p$		a contradiction? b) $(p \land q) \rightarrow p$ d) $(p \lor q) \rightarrow p$					
3)	Which proposition is false?a) $\exists x \exists y (x y = 1)$ b) $\forall x \exists y (x y = 1)$ c) $\exists x \forall y (x y = 0)$ d) $\forall x \exists y (x y = 0)$							
4)	Evaluate GCD a) 0	0(361,14 b) 1	4).	c) 2		d) 3		
5)	Convert the decimal number 2006 to hexadecimal. a) 7D6 b) 7EA c) 8F6 d) 8A2							
6)	Which quantity is the a) 100 mod 9 c) 22 mod 3		largest? b) 100 mod 25 d) 22 mod 19					
7)	"If x ³ is even then x is a) x ³ is odd c) x ³ is even		even". To prove this by contrapositive we start wit b) x is odd d) x is even				art with	
Part 2	Each problem is worth 3 points. Write complete solution.							
8)	Is this argument valid? Premise 1 If today is Friday then tomorrow is Sunday. Premise 2 Tomorrow is not Sunday.							

- Conclusion Today is not Friday.
- 9) Prove by mathematical induction for all integer $n \ge 1$.

$$1 + 8 + 64 + \dots + 8^{n-1} = \frac{8^n - 1}{7}$$

-Amin Witno