PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Discrete Structures	(210104)	Paper:	Final Exam (A)
Discrete Mathematics	(210242)	Date:	13 June 2006
Discrete Mathematics	(250151)	Time:	11:30 – 13:30

Instructors: Dr. Khaled Hyasat / Dr. Anwar Fawakhreh / Dr. Amin Witno

Part One Each problem is worth 2 point	ts.
--	-----

1.	Which propos (a) $p \rightarrow \neg p$	ition is a contin (b) p⊕ ¬ p	gency? (c)	(d) ¬ p ∨ p	
2.	Which equival (a) $p \rightarrow q \equiv \neg$ (c) $p \oplus q \equiv \neg$	lence is not cor p ∨ q p ↔ q	rect? (b) q → ¬ p ≡ (d) p ⊕ ¬ q ≡	$p \rightarrow \neg q$ $\neg p \leftrightarrow q$	
3.	Convert the pr (a) (¬p ∨ q) / (c) (p ∨ ¬q) /	roposition (¬p / ∖ (¬p ∨ ¬q) ∖ (p ∨ q)	$(\mathbf{q}) \lor (\mathbf{q} \mathbf{p} \land \mathbf{q})$ (b) ($\mathbf{p} \lor \mathbf{q}$) (c) ($\mathbf{p} \lor \mathbf{q}$)	q) to a CNF. ∧ (p ∨ ¬q) (¬p ∨ ¬q)	
4.	Let $P(x,y) : x^2$ (a) $\exists x \forall y P$	– y ≥ 0. Which (b) ∃y ∀x P	proposition is (c) ∀x ∃y P	false? (d) ∀y ∃x P	
5.	Convert the bi (a) ABE	nary number 1 (b) BDA	01010111101 (c) BEA	to hexadecimal. (d) ABD	
6.	If A = 2 and (a) 16	B = 4 then P((b) 64	(A × B) = (c) 32	(d) 256	
7.	Convert the de (a) 3DA	ecimal number (b) 3E3	995 to hexade (c) 3D6	cimal. (d) 3E4	
8.	Evaluate GCD (a) 3	0 (236, 326). (b) 18	(c) 2	(d) 1	
9.	Find an explicit formula for the following recurrence sequence. $\begin{array}{l}f(0)=1\\f(1)=2\\f(n)=4\ f(n-1)-4\ f(n-2)\ for\ n\geq2\end{array}$				
	(a) $f(n) = 2^n$ (c) $f(n) = n(2^n)$		(b) $f(n) = 2^n + n(2^n)$ (d) $f(n) = \frac{1}{2}(2^n) + 2n(2^n)$		
10.	How many po (a) 476	sitive integers s (b) 477	≦ 500 which are (c) 467	e not multiples of 20 or 30? (d) 480	
11.	There are 6 chapters in Discrete Structures notes. How many questions at least must be in the Final Exam to make sure \geq 7 questions come from the same chapter?				

(a) 37 (b) 43 (c) 49 (d) 46

18. Apply the post-order algorithm for this labeled binary tree.
(a) F,D,A,C,B,H,E,G
(b) F,H,D,B,E,A,G,C
(c) F,D,A,B,H,E,G,C
(d) F,D,A,H,E,B,G,C

19. Apply the in-order algorithm for the same tree. (a) D,F,A,C,B,G,H,E (b) F,D,A,C,B,G,E,H (c) A,D,F,C,B,G,E,H (d) D,F,A,C,B,G,E,H

Part Two Each problem is worth 4 points

- Is the following argument valid or not valid? Prove it.
 Premise 1: Today is not Sunday
 Premise 2: Today is Sunday if and only if tomorrow is not Friday
 Conclusion: Tomorrow is Friday
- 2. How many positive integers \leq 500 are not multiples of 8 or 12 or 20?
- 3. Represent the following expression using a labeled binary tree according to the in-order traversal algorithm.

 $\{\,p \rightarrow \ (\neg \ p \leftrightarrow q)\,\} \ \rightarrow \ (\neg \ q \leftrightarrow p) \ \leftrightarrow \ q$