PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Discrete Structures Discrete Mathematics Discrete Mathematics		(21010 (21024 (25018	04) 42) 51)	Paper: Date: Time:	Final Exam (A) 14 June 2005 12:00 – 14:00
Instruc	tors: Dr. Sabah	Ahmad /	Dr. Amin Witno	o / Dr. Anwar	Fawakhreh
Circle	the best choice. Ea	ch problen	n is worth 2.5 p	oints.	
1.	Which proposition is a contingency? (a) $p \rightarrow \neg p$ (b) $p \oplus \neg p$ (c) $\neg p \leftrightarrow p$ (d) $\neg p \lor p$				
2.	Which equivalence (a) $p \rightarrow q \equiv \neg p \lor$ (c) $p \oplus q \equiv \neg p \leftrightarrow$	e is not col q q	rrect? (b) q → ¬ p ≡ (d) p ⊕ ¬ q ≡	$p \rightarrow \neg q$ $p \leftrightarrow q$	
3.	Let $P(x, y) : x^2 +$ (a) $\forall x \exists y P(x, y)$ (b) $\exists x \forall y P(x, y)$	y ≥ 0. W	hich propositior (c) ∀y∃x P(x (d) ∃y ∀x P(x	ns is false? , y) , y)	
4.	Convert the decim (a) 4DE (b)	al number 2DC	732/718 to hex (c) 4DB	xadecimal. (d) 2CE	
5.	Evaluate GCD (27 (a) 1 (b)	3, 372). 2	(c) 3	(d) other answ	ver
6.	Find an explicit formula for the following recurrence sequence. $\begin{array}{c}f(0) = 1\\f(1) = 2\\f(n) = 4 \ f(n-1) - 4 \ f(n-2) \ for \ n \geq 2\end{array}$ (a) $f(n) = 2^{n}$ (b) $f(n) = 2^{n} + n(2^{n})$ (c) $f(n) = n(2^{n})$ (d) $f(n) = \frac{1}{2}(2^{n}) + 2n(2^{n})$				
7.	Which set is not e (a) A⊕A (b)	mpty? A ∩ (A – I	B) (c) A -	– A (d) A	∩ (B – A)
8.	How many positive (a) 427 (b)	e integers : 373	≤ 500 which are (c) 467	e not multiples (d) other ansv	of 20 or 30? ver
9.	How many words (a) 56 (b)	can be forr 5040	med by permuta (c) 12	ations of the w 60	ord SCIENCE? (d) 210
10.	Let $R = \{(1,2), (2,2), (3,3)$	2), (3,3), (3 3,4)} I,3), (3,4)}	5,4)}. Find R ² . (b) {(1 (d) {(1	,2), (2,2), (3,4) ,2), (2,2), (3,3)	} , (3,4)}
11.	Let $A = \{1, 2, 3, 4, Which of the follow (a) symmetric and$	5} and R = ving best c not transit	= {(a, b) a + b lescribes R? tive (b) trai	is odd} be a re	lation from A to A. reflexive

(c) an equivalence relation (d) not symmetric and not transitive

