Discrete Mathematics
Dr. Amin Witno
Final Exam
25-1-2003

1. Prove by induction for all n positive,

$$
2+4+6+\ldots+2 n=n(n+1)
$$

2. Find the formula for the recurrence relation given by
a_0 $=1$
a_1 $=2$
$\mathrm{a}_{-} \mathrm{n}=\mathrm{a} _(\mathrm{n}-1)+12 \mathrm{a} _(\mathrm{n}-2)$
3. Let $\mathrm{A}=\{1,3,5,6,30,45\}$ and $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ divides b$\}$. Find the elements of R and draw its Hasse diagram.
4. Draw the complete graph with 6 vertices and then find its total degree.
5. Draw any graph with 5 vertices and 8 edges which is an Euler circuit.
6. Use a binary tree to represent $(A+B) x(C-D)-\{E+(F x G)\}$.
7. Write the output of the inorder traversal on the following tree.

$$
(1,1,1,1),(1,1,2),(1,2,1),(1,2,2,1),(1,2,2,2),(1,2,3)
$$

