Department of Basic Sciences - Philadelphia University

Final Exam

Complex Analysis

28-06-2022
Choose 7 questions from 8. No bonus.

1. Prove that $\cos ^{2} z+\sin ^{2} z=1$ using the definition of $\cos z$ and $\sin z$.
2. Prove that $u(x, y)=y^{3}-3 x^{2} y$ is harmonic for all $x, y \in \mathbb{R}$ and find its harmonic conjugate $v(x, y)$, such that $f(z)=u+i v$ is entire.
3. Let $f(z)=f(x+y i)=2 x^{2}+i x+2 i x y-y^{3}-i y^{2}$. Use Cauchy-Riemann equations to find the domain where $f^{\prime}(z)$ exists and find it.
4. Let $f(z)=(\bar{z})^{5}$. Use Cauchy-Riemann equations in polar form to find the domain where $f^{\prime}(z)$ exists and find it.
5. Evaluate the line integral using definition or using anti-derivative.

$$
\int_{0}^{2}(t+i)\left(t^{2}+2 i t\right)^{2} d t
$$

6. Evaluate the contour integral, where C is the straight line from $z=-1$ to $z=1+4 i$.

$$
\int_{C}(3 z+2 \bar{z}) d z
$$

7. Evaluate using Cauchy Integral Formula, where C is the circle with center at $z_{0}=0$ and radius $R=3$.

$$
\int_{C} \frac{z+1}{\left(z^{2}+4\right)} d z
$$

8. Evaluate using the general form of Cauchy Integral Formula, where C is the circle with center at $z_{0}=i$ and radius $R=\frac{1}{2}$.

$$
\int_{C} \frac{z-1}{\left(z^{2}-i z\right)^{3}} d z
$$

