Department of Basic Sciences - Philadelphia University

Midterm Exam

Complex Analysis
22-05-2022

1. (2 points) Evaluate $\frac{5+8 i}{-3+i}$ in the rectangular form $(X)+(Y) i$.
2. (2 points) Evaluate $\log (-\sqrt{3}+i)$ in the rectangular form $(X)+(Y) i$.
3. (2 points) Evaluate the Principal power $(-i)^{3 i}$ in the rectangular form $(X)+(Y) i$.
4. (3 points) Evaluate $(-1+i)^{14} \quad$-Final answer in rectangular form $(X)+(Y) i$.
5. (3 points) Let $f(z)=e^{1 / z}$. Find the real functions $u(x, y)$ and $v(x, y)$ such that $f(z)=u+i v$.
6. (5 points) Find all complex numbers z such that $z^{2}=21-20 i$.
7. (3 points) Use the definition $\cosh z=\frac{e^{z}+e^{-z}}{2}$ and $\sinh z=\frac{e^{z}-e^{-z}}{2}$ to prove

$$
\cosh \left(z_{1}+z_{2}\right)=\cosh z_{1} \cosh z_{2}+\sinh z_{1} \sinh z_{2}
$$

8. (3 points) Use the formula $\sin z=\sin x \cosh y+i \cos x \sinh y$ to prove

$$
|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y
$$

9. (2 points) Prove the limit at infinity: $\lim _{z \rightarrow \infty} \frac{i z^{4}-2 z+5 i}{z^{2}-i}=\infty$
10. (5 points) Let $f(z)=e^{x}\left(y^{2}+i y^{2}-8 i\right)$. Use Cauchy-Riemann equations to find the domain where $f^{\prime}(z)$ exists, then find $f^{\prime}(z)$.
