Department of Basic Sciences - Philadelphia University

Final Exam

Complex Analysis

30-01-2022
There are (8) questions, each is worth 5 points.

1. (a) Evaluate and write the final answer in rectangular form: $\frac{-2+3 i}{3+i}$
(b) Evaluate and write the final answer in rectangular form: $(-1-i)^{11}$
2. (a) Evaluate and write the final answer in rectangular form: $\cos \left(\frac{\pi}{6}+i\right)$
(b) Evaluate and write the final answer in rectangular form: $(-i)^{-1+i}$ (Principal)
3. Let $f(z)=f(x+y i)=e^{x} y^{2}+i e^{x} y-3 i e^{x}$. Use Cauchy-Riemann equations to find the domain where $f^{\prime}(z)$ exists, then find $f^{\prime}(z)$.
4. Prove that $u(x, y)=y^{3}-3 y x^{2}+2 y$ is harmonic for all $x, y \in \mathbb{R}$ and find a harmonic conjugate v (such that $f(z)=u+i v$ is entire).
5. Evaluate the contour integral, where C is the straight line from $z=-2$ to $z=i$ and write the final answer in rectangular form.

$$
\int_{C}\left(3 z^{2}+\bar{z}\right) d z
$$

6. Evaluate using Cauchy Integral Formula, where C is the circle $z(t)=2 i+\frac{3}{2} e^{i t}$, ($0 \leq t \leq 2 \pi$) and write the final answer in rectangular form.

$$
\int_{C} \frac{z-1}{\left(z^{2}-i z\right)^{3}} d z
$$

7. Evaluate using Cauchy Integral Formula

$$
\int_{0}^{2 \pi} \frac{d x}{5-4 \sin x}
$$

8. Evaluate using Cauchy Integral Formula

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

