Department of Basic Sciences - Philadelphia University

Mid Exam

Complex Analysis
29-11-2021

1. (2 points) Evaluate $\frac{3-6 i}{-2+i}$ in the rectangular form $(X)+(Y) i$.
2. (2 points) Evaluate $\log (-\sqrt{3}-i)$ in the rectangular form $(X)+(Y) i$.
3. (2 points) Evaluate the Principal power $(-2)^{i}$ in the rectangular form $(X)+(Y) i$.
4. (3 points) Evaluate $\sinh \left(\frac{\pi}{4} i\right)$ in the rectangular form $(X)+(Y) i$.
5. (3 points) Evaluate $(-1+i)^{10} \quad$-Final answer in rectangular form $(X)+(Y) i$.
6. (4 points) Find all complex numbers z such that $\cosh z=1$.
7. (2 points) Let $f(z)=\sin \left(z^{2}\right)$. Find the real functions $u(x, y)$ and $v(x, y)$ such that $f(z)=u+i v$.
8. (3 points) Let $f(z)=i e^{(1+i) z}$. Find the real functions $u(x, y)$ and $v(x, y)$ such that $f(z)=u+i v$.
9. (2 points) Use the definition of limit to prove $\lim _{z \rightarrow(1-i)} z+5 i z=6+4 i$
10. (2 points) Prove the limit at infinity: $\lim _{z \rightarrow \infty} \frac{i z^{3}-2 z+3 i}{z^{2}-i}=\infty$
11. (5 points) Let $f(z)=e^{x}\left(y^{2}+i y^{2}-8 i\right)$. Use Cauchy-Riemann equations to find the domain where $f^{\prime}(z)$ exists, then find $f^{\prime}(z)$.
