Philadelphia University

 Department of Basic Sciences

 Department of Basic Sciences}

1. Let $u(x, y)=x^{4}+y^{4}-6 x^{2} y^{2}$.
(a) (2pt) Prove that u is harmonic for all (x, y).
(b) (4pt) Find $v(x, y)$ such that $f=u+i v$ is entire.
2. (6pt) Let $f(z)=f(x, y)=2 x^{2}+i x+2 i x y-y^{3}-i y^{2}$. Use Cauchy-Riemann equations to find the domain where $f^{\prime}(z)$ exists and find the derivative.
3. (5pt) Evaluate $\int_{C} \cos z d z$ where C is the semi-circle $e^{i t}\left(-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right)$. (Final answer must be in the form $x+i y$, where x, y real numbers.)
4. (5pt) Evaluate $\int_{C} \bar{z} d z$ where C is the straight line from 1 to i. (Final answer must be in the form $x+i y$, where x, y real numbers.)
5. (6pt) Evaluate $\int_{C} \frac{d z}{z^{4}+i z^{3}}$ using Cauchy Integral Formula, where C is the circle $|z|=3$. (Final answer must be in the form $x+i y$, where x, y real numbers.)
6. (6 pt) Evaluate $\int_{0}^{2 \pi} \frac{d x}{5+3 \cos x}$ using Cauchy Integral Formula.
7. (6pt) Evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}$ using Cauchy Integral Formula.
8. (2pt) Bonus Problem: (Only if the solution is correct and complete. Maximum mark for this Exam is 40 points.) Use Cauchy-Riemann equations to prove that if $f^{\prime}(z)=0$ in some complex domain, then $f(z)$ is constant there.
