Philadelphia University

Department of Basic Sciences

Final Exam

Complex Analysis

1. (5 points) Find all the numbers $z=x+i y$ such that $z^{2}=21-20 i$.
2. (7 points) Find the domain where f^{\prime} exists and find it using the Cauchy-Riemann equations.

$$
f(z)=f(x+i y)=2 x^{2}-y^{3}+i\left(x+2 x y-y^{2}\right)
$$

3. (4 points) Evaluate $(-1-i \sqrt{3})^{2 i}$ using the principal Log. Write your answer in the form $x+i y$, where $x, y \in \mathbb{R}$.
4. (7 points) Evaluate $\int_{C}(\bar{z})^{2} d z$, where C is the straight line from $-1+2 i$ to $1-2 i$. Write your answer in the form $x+i y$, where $x, y \in \mathbb{R}$.
5. (5 points) Use Cauchy Integral Formula to evaluate the contour integral, where C is the circle $|z-2 i|=3$.

$$
\int_{C} \frac{d z}{z\left(z^{2}+4\right)}
$$

6. (5 points) Evaluate the real integral using Cauchy Integral Formula.

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{3}}
$$

7. (7 points) Evaluate the real integral using Cauchy Integral Formula.

$$
\int_{0}^{2 \pi} \frac{d x}{5-3 \sin x}
$$

