Philadelphia University

Department of Basic Sciences

Exam 1

Complex Analysis

1. (3 points)
(a) Simplify in the form $x+i y$:

$$
\frac{3-2 i}{-1+i}
$$

(b) Write the number $z=-1+i \sqrt{3}$ in polar form $z=r e^{i \theta}$, where $\theta=\operatorname{Arg} z$.
(c) Draw the region in the complex plane given by the condition $|2 z+3 i| \leq 4$.
2. (3 points) Find two complex numbers $z=x+i y$ such that $z^{2}=-15-8 i$.
3. (2 points) Find the functions $u(x, y)$ and $v(x, y)$ such that $f(z)=u+i v$:

$$
f(z)=\bar{z}-i e^{i|z|}
$$

4. (4 points) Use the definition of limit to prove the limit:

$$
\lim _{z \rightarrow 2+i} 3 z-2 i z=8-i
$$

5. (4 points) Let $f(z)=e^{x}\left(y^{2}+i y-3 i\right)$.
(a) Use Cauchy-Riemann equations to find the domain where $f^{\prime}(z)$ exists.
(b) Find $f^{\prime}(z)$.
6. (4 points) Let $u(x, y)=x y+e^{x} \cos y$.
(a) Prove that $u(x, y)$ is harmonic for all $x, y \in \mathbb{R}$.
(b) Find a harmonic conjugate $v(x, y)$ such that $f(z)=u+i v$ is entire.
