PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 1

Complex Analysis

17 - 04 - 2018

- 1. (3 points)
 - (a) Simplify in the form x + iy:

$$\frac{3-2i}{-1+i}$$

- (b) Write the number $z = -1 + i\sqrt{3}$ in polar form $z = re^{i\theta}$, where $\theta = \text{Arg } z$.
- (c) Draw the region in the complex plane given by the condition $|2z + 3i| \le 4$.
- 2. (3 points) Find two complex numbers z = x + iy such that $z^2 = -15 8i$.
- 3. (2 points) Find the functions u(x, y) and v(x, y) such that f(z) = u + iv:

 $f(z) = \bar{z} - ie^{i|z|}$

4. (4 points) Use the definition of limit to prove the limit:

$$\lim_{z \to 2+i} 3z - 2iz = 8 - i$$

- 5. (4 points) Let $f(z) = e^x(y^2 + iy 3i)$.
 - (a) Use Cauchy-Riemann equations to find the domain where f'(z) exists.
 - (b) Find f'(z).
- 6. (4 points) Let $u(x, y) = xy + e^x \cos y$.
 - (a) Prove that u(x, y) is harmonic for all $x, y \in \mathbb{R}$.
 - (b) Find a harmonic conjugate v(x, y) such that f(z) = u + iv is entire.

-Amin Witno