Philadelphia University
 Department of Basic Sciences

Final Exam

Abstract Algebra 2
14-06-2017

Choose 5 problems and write a complete solution for each one.

1. Let R be any ring (commutative or not commutative) and let $c \in R$. Prove that the set $S=\{r \in R \mid r c=c r\}$ is a subring of R.
2. Let R be any ring (commutative or not commutative) with an ideal I. Prove that the set $S=\{x \in R \mid x a=0$ for all $a \in I\}$ is an ideal of R.
3. Let F be a field. Prove that the polynomial ring $F[x]$ is a principal ideal domain.
4. Let F be a field and let $f \in F[x]$. Prove that f is irreducible if and only if $F[x] /(f)$ is a field.
5. Let F be a field and let $f, g, h \in F[x]$ such that f is irreducible. Prove that if $f \mid g h$, then either $f \mid g$ or $f \mid h$.
6. Let $f=x^{5}+x^{4}+1$ and $g=x^{5}+x^{3}+1$. Prove that f is reducible and g is irreducible in $\mathbb{Z}_{2}[x]$.
7. Let F be a finite field with $\chi(F)=p$, where p is a prime number. Prove that the function $\theta(x)=x^{p^{2}}$ is a ring isomorphism from F to F.
