PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 2

14 - 06 - 2017

Choose 5 problems and write a complete solution for each one.

- 1. Let R be any ring (commutative or not commutative) and let $c \in R$. Prove that the set $S = \{r \in R \mid rc = cr\}$ is a subring of R.
- 2. Let R be any ring (commutative or not commutative) with an ideal I. Prove that the set $S = \{x \in R \mid xa = 0 \text{ for all } a \in I\}$ is an ideal of R.
- 3. Let F be a field. Prove that the polynomial ring F[x] is a principal ideal domain.
- 4. Let F be a field and let $f \in F[x]$. Prove that f is irreducible if and only if F[x]/(f) is a field.
- 5. Let F be a field and let $f, g, h \in F[x]$ such that f is irreducible. Prove that if $f \mid gh$, then either $f \mid g$ or $f \mid h$.
- 6. Let $f = x^5 + x^4 + 1$ and $g = x^5 + x^3 + 1$. Prove that f is reducible and g is irreducible in $\mathbb{Z}_2[x]$.
- 7. Let F be a finite field with $\chi(F) = p$, where p is a prime number. Prove that the function $\theta(x) = x^{p^2}$ is a ring isomorphism from F to F.

-Amin Witno