Philadelphia University
 Department of Basic Sciences

Exam 1

Abstract Algebra 2

06-04-2017

Choose 4 problems.

1. Let $R=M(2, \mathbb{R})$ and $S=\left\{\left.\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$.
(a) Prove that S is a subring of R.
(b) Is S an ideal of R ? Explain why or why not.
2. Let $S=\{x+y \sqrt{17} \mid x, y \in \mathbb{Q}\}$. Prove that S is a subfield of \mathbb{R}.
3. Let R be a commutative ring, and let I be an ideal of R. Let $J=\{x \in R \mid x r \in I$ for all $r \in R\}$. Prove that J is an ideal of R.
4. Let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ with principal ideal $I=((0,2))$.
(a) Construct the multiplication table for the factor ring R / I.
(b) Find all the units and zero divisors in R / I.
5. Let $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ (a subring of \mathbb{R}), and let $S=\left\{\left.\left(\begin{array}{cc}x & 2 y \\ y & x\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}\right\}$ (a subring of $M(2, \mathbb{Z})$). Let $\theta: R \rightarrow S$ be defined by $\theta(a+b \sqrt{2})=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)$. Prove that θ is a ring isomorphism.
-Amin Witno
