PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 1

Abstract Algebra 2

06 - 04 - 2017

Choose 4 problems.

- 1. Let $R = M(2, \mathbb{R})$ and $S = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$
 - (a) Prove that S is a subring of R.
 - (b) Is S an ideal of R? Explain why or why not.
- 2. Let $S = \{x + y\sqrt{17} \mid x, y \in \mathbb{Q}\}$. Prove that S is a subfield of \mathbb{R} .
- 3. Let R be a commutative ring, and let I be an ideal of R. Let $J = \{x \in R \mid xr \in I \text{ for all } r \in R\}$. Prove that J is an ideal of R.
- 4. Let $R = \mathbb{Z}_3 \times \mathbb{Z}_4$ with principal ideal I = ((0, 2)).
 - (a) Construct the multiplication table for the factor ring R/I.
 - (b) Find all the units and zero divisors in R/I.
- 5. Let $R = \{a+b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ (a subring of \mathbb{R}), and let $S = \left\{ \begin{pmatrix} x & 2y \\ y & x \end{pmatrix} \mid x, y \in \mathbb{Z} \right\}$ (a subring of $M(2,\mathbb{Z})$). Let $\theta : R \to S$ be defined by $\theta(a+b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$. Prove that θ is a ring isomorphism.

-Amin Witno