Philadelphia University
 Department of Basic Sciences

Exam 2

Abstract Algebra 2
08-01-2017

1. Let F be a field. Prove that the polynomial ring $F[x]$ is a principal ideal domain.
2. Let $f=21 x^{4}-60$ and $g=8 x^{3}+x+27$. Prove that f and g are irreducible in $\mathbb{Q}[x]$.
3. Let $f=6 x^{5}+2 x^{3}+2 x^{2}+3$ and $g=4 x^{4}+5$. Evaluate $\operatorname{gcd}(f, g)$ in $\mathbb{Z}_{7}[x]$.
4. Let F be a field and let $f, g, h \in F[x]$ such that $\operatorname{gcd}(f, g)=1$. Prove that if $f \mid h$ and $g \mid h$, then $f g \mid h$.
5. Let $\theta: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{20}$ such that $\theta(n)=5 n$ for all $n \in \mathbb{Z}_{20}$. (a) Prove that θ is a ring homomorphism, but not an isomorphism. (b) Find the kernel and the range of this homomorphism.
-Amin Witno
