PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Abstract Algebra 2

08 - 01 - 2017

- 1. Let F be a field. Prove that the polynomial ring F[x] is a principal ideal domain.
- 2. Let $f = 21x^4 60$ and $g = 8x^3 + x + 27$. Prove that f and g are irreducible in $\mathbb{Q}[x]$.
- 3. Let $f = 6x^5 + 2x^3 + 2x^2 + 3$ and $g = 4x^4 + 5$. Evaluate gcd(f, g) in $\mathbb{Z}_7[x]$.
- 4. Let F be a field and let $f, g, h \in F[x]$ such that gcd(f, g) = 1. Prove that if $f \mid h$ and $g \mid h$, then $fg \mid h$.
- 5. Let $\theta : \mathbb{Z}_{20} \to \mathbb{Z}_{20}$ such that $\theta(n) = 5n$ for all $n \in \mathbb{Z}_{20}$. (a) Prove that θ is a ring homomorphism, but not an isomorphism. (b) Find the kernel and the range of this homomorphism.

-Amin Witno