Philadelphia University
 Department of Basic Sciences

1. (5 points) Let $\theta: R \rightarrow R^{\prime}$ be a ring homomorphism. Prove that θ is one-to-one if and only if $\operatorname{ker} \theta=\{0\}$.
2. (5 points) Let F be a field. Prove that F has only two ideals: $I=\{0\}$ and $I=F$.
3. (5 points) Find the minimal polynomial for $\sqrt{13}-\sqrt{3}$ over \mathbb{Q}.
4. (5 points) Prove reducible or irreducible: $f=3 x^{4}-5 x^{3}+6 x^{2}-2 x+7 \in \mathbb{Q}[x]$.
5. (10 points) Let R be a commutative ring, and let $x, y \in R$. Prove that the set $S=\{a x+b y \mid a, b \in R\}$ is an ideal of R.
6. (10 points) Let F be a finite field with $\chi(F)=p$. Let $\theta: F \rightarrow F$ such that $\theta(a)=a^{p^{2}}$. Prove that θ is an isomorphism.
-Amin Witno
