PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 2

13 - 06 - 2016

- 1. (5 points) Let $\theta : R \to R'$ be a ring homomorphism. Prove that θ is one-to-one if and only if ker $\theta = \{0\}$.
- 2. (5 points) Let F be a field. Prove that F has only two ideals: $I = \{0\}$ and I = F.
- 3. (5 points) Find the minimal polynomial for $\sqrt{13} \sqrt{3}$ over \mathbb{Q} .
- 4. (5 points) Prove reducible or irreducible: $f = 3x^4 5x^3 + 6x^2 2x + 7 \in \mathbb{Q}[x]$.
- 5. (10 points) Let R be a commutative ring, and let $x, y \in R$. Prove that the set $S = \{ax + by \mid a, b \in R\}$ is an ideal of R.
- 6. (10 points) Let F be a finite field with $\chi(F) = p$. Let $\theta : F \to F$ such that $\theta(a) = a^{p^2}$. Prove that θ is an isomorphism.

–Amin Witno