Philadelphia University
 Department of Basic Sciences

Exam 2

Abstract Algebra 2

08-05-2016

1. Let F be a field. Prove that the polynomial ring $F[x]$ is a principal ideal domain.
2. Evaluate $\operatorname{gcd}\left(x^{8}+x^{6}+x^{2}+1, x^{6}+2 x^{2}-2\right)$ in $\mathbb{Z}_{5}[x]$.
3. Let $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ and $S=\left\{\left.\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$. Consider R as a subring of \mathbb{R} and S a subring of $M(2, \mathbb{Z})$. Prove the ring isomorphism $R \approx S$ using the function $\theta(a+b \sqrt{2})=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)$.
4. Factor $f=x^{3}+x^{2}-x+2$ using irreducible polynomials in $\mathbb{Z}_{7}[x]$.
5. Prove that $f=5 x^{4}-30 x^{2}+60$ is irreducible in $\mathbb{Q}[x]$.
