Philadelphia University
 Department of Basic Sciences

Final Exam

Abstract Algebra 2
05-06-2014

Choose seven problems. No bonus.

1. Let $S=\{a+b \sqrt{7} \mid a, b \in \mathbb{Q}\}$. Prove that S is a subfield of \mathbb{R}.
2. Let R be a ring and let $S=\{r \in R \mid a r=r a$ for all $a \in R\}$. Prove that S is a subring of R.
3. Let R be any ring (maybe not commutative) and let I be an ideal of R. Let $S=\{r \in R \mid r a=0$ for all $a \in I\}$. Prove that S is an ideal of R.
4. Let $\theta: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{10}$ such that $\theta(n)=6 n$ for all $n \in \mathbb{Z}_{20}$. Prove that θ is a ring homomorphism and find its kernel. Is θ one-to-one? Is θ onto?
5. Let $f=x^{4}+3 x^{3}+x^{2}+2 x+1 \in \mathbb{Z}_{7}[x]$. Factor f completely using irreducible polynomials.
6. Let $f=x^{4}+x^{2}+1 \in \mathbb{Z}_{2}[x]$. Show that the factor ring $\mathbb{Z}_{2}[x] /(f)$ has a zero divisor.
7. Find an example of a finite field F with 25 elements. Then find an element $a \in F$ that has order 3 in the multiplicative group F^{*}.
8. Let F be a finite field with $\chi(F)=3$. Let $\theta: F \rightarrow F$ such that $\theta(x)=x^{9}$ for all $x \in F$. Prove that θ is a ring isomorphism.
9. Let $f=x^{4}+x^{3}-x+1$. Prove that f is reducible over \mathbb{Z}_{2} but irreducible over \mathbb{Z}_{3}. Is f reducible or irreducible over \mathbb{Q} ?
10. Let F be a finite field with 27 elements. Let $a \in F$ such that $a \notin\{0,1,2\}$. Prove that $F=\mathbb{Z}_{3}(a)$.
