Philadelphia University
 Department of Basic Sciences

Exam 2

Abstract Algebra 2
06-05-2014

Choose five problems. No bonus.

1. Evaluate $\operatorname{gcd}\left(x^{63}-1, x^{45}-1\right)$ in $\mathbb{Q}[x]$.
2. Find the minimal polynomial for $a=\sqrt{3}-2 \sqrt{7} \in \mathbb{R}$ over \mathbb{Q}.
3. (a) Prove that the polynomial $f=x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$. (b) Construct the multiplication table for the finite field $\mathbb{Z}_{2}[x] /(f)$.
4. Let F be a field. Prove that the polynomial ring $F[x]$ is a principal ideal domain.
5. Let F be a field and $f, g, h \in F[x]$ such that $\operatorname{gcd}(f, g)=1$. Prove that if $f \mid g h$, then $f \mid h$.
6. Let F be a field and $f \in F[x]$. Prove that the factor ring $F[x] /(f)$ is a field if and only if f is irreducible in $F[x]$.
7. Let F be a finite field with $\chi(F)=p$. Prove that there exists $a \in F$ such that $F=\mathbb{Z}_{p}(a)$.
-Amin Witno
