PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Abstract Algebra 2

06 - 05 - 2014

Choose five problems. No bonus.

- 1. Evaluate $gcd(x^{63} 1, x^{45} 1)$ in $\mathbb{Q}[x]$.
- 2. Find the minimal polynomial for $a = \sqrt{3} 2\sqrt{7} \in \mathbb{R}$ over \mathbb{Q} .
- 3. (a) Prove that the polynomial $f = x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. (b) Construct the multiplication table for the finite field $\mathbb{Z}_2[x]/(f)$.
- 4. Let F be a field. Prove that the polynomial ring F[x] is a principal ideal domain.
- 5. Let F be a field and $f, g, h \in F[x]$ such that gcd(f, g) = 1. Prove that if $f \mid gh$, then $f \mid h$.
- 6. Let F be a field and $f \in F[x]$. Prove that the factor ring F[x]/(f) is a field if and only if f is irreducible in F[x].
- 7. Let F be a finite field with $\chi(F) = p$. Prove that there exists $a \in F$ such that $F = \mathbb{Z}_p(a)$.

-Amin Witno