Philadelphia University
 Department of Basic Sciences

Exam 1

Abstract Algebra 2
25-03-2014

Choose five problems. No bonus.

1. (a) Find an example of a ring with no unity.
(b) Find an example of a finite ring with no zero divisor.
(c) Find an example of an integral domain that is not a field.
(d) Find an example of a unit element in $\mathbb{Z} \times \mathbb{Z}$ that is not the unity.
2. Let $S=\left\{\left.\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$. Prove that S is a subring of $M(2, \mathbb{R})$.
3. Let R be a ring with unity but without zero divisors. Prove that for any two elements $a, b \in R$, if $a b=1$ then $b a=1$.
4. Prove that if R is a finite integral domain, then R is a field.
5. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ and let $a=(2,2) \in R$. Construct the multiplication table for the factor ring $R /(a)$.
6. Let $\theta: R \rightarrow R^{\prime}$ be a ring homomorphism. Prove that $\operatorname{ker}(\theta)$ is an ideal of R.
