Philadelphia University
 Department of Basic Sciences

Exam 1

Abstract Algebra 2
14-03-2012

Choose four problems.

1. (a) What is the definition of a ring? (b) Let G be an abelian group under addition. Suppose that $a \times b=0$ for all $a, b \in G$. Prove that G is a ring.
2. Let R be a ring and let $S=\{a \in R \mid a r=r a \forall r \in R\}$. Prove that S is a subring of R.
3. Let $R=\mathbb{Z}_{5} \times \mathbb{Z}_{3}$. (a) What is the definition of an integral domain? (b) Prove that R is not an integral domain. (c) What are the unit elements in R ? (d) What are the zero divisors in R ?
4. (a) What is the definition of a field? (b) Find an example of an integral domain which is not a field. (c) Let R be a finite integral domain. Prove that R is a field.
5. Let $S=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\}$. Prove that S is a subfield of \mathbb{R}.
6. Let I be an ideal of a commutative ring R with unity. (a) What is the definition of an ideal? (b) Suppose that R has no ideals except $\{0\}$ and R. Prove that R is a field.
-Amin Witno
