PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 2

08 - 06 - 2011

Choose only 5 problems from the following 8 problems.

- 1. Let $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$
 - (a) Prove that R is a subring of \mathbb{R} .
 - (b) Prove that R is an integral domain.
 - (c) Prove that R is not a field.
- 2. (a) Find all the units in \mathbb{Z} , \mathbb{Z}_{18} , and $\mathbb{Q}[x]$.
 - (b) Find all the zero divisors in $\mathbb{Z}_3 \times \mathbb{Z}_5$.
 - (c) Find one example of a zero divisor in $M(2,\mathbb{Z})$.
- 3. Let R be a commutative ring, $a \in R$, and $I = \{r \in R \mid ar = 0\}$.
 - (a) Prove that I is an ideal of R.
 - (b) If $R = \mathbb{Z}_{12}$ and a = 3, find the elements of I and R/I.
 - (c) Construct the Cayley table for R/I in (b) under multiplication.
- 4. Let $S = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$ and \mathbb{C} be the field of complex numbers.
 - (a) Prove that S is a subring of $M(2, \mathbb{R})$.
 - (b) Prove that $\mathbb{C} \approx S$ by defining $\theta(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.
- 5. Prove that $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3}).$
- 6. Let $f = x^4 x^2 + 2x 1 \in \mathbb{Z}_5$.
 - (a) Prove that f is reducible in \mathbb{Z}_5 .
 - (b) Factor f using irreducible polynomials.
 - (c) Prove that each factor in (b) is irreducible in \mathbb{Z}_5 .
- 7. Let $f = x^2 + x + 2 \in \mathbb{Z}_3[x]$ and $F = \mathbb{Z}_3[x]/(f)$.
 - (a) Find all the elements of F.
 - (b) Prove that F is a field.
 - (c) Find the order of (f) + x + 2 in the group F^* .
- 8. Let F be a field with $\chi(F) = 2$. Suppose that F has dimension 5 as a vector space over \mathbb{Z}_2 . Prove that $F^* = \langle a \rangle$ for any nonzero element $a \neq 1$.

-Amin Witno