Philadelphia University

Department of Basic Sciences

Final Exam

Abstract Algebra 2
08-06-2011

Choose only 5 problems from the following 8 problems.

1. Let $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$.
(a) Prove that R is a subring of \mathbb{R}.
(b) Prove that R is an integral domain.
(c) Prove that R is not a field.
2. (a) Find all the units in $\mathbb{Z}, \mathbb{Z}_{18}$, and $\mathbb{Q}[x]$.
(b) Find all the zero divisors in $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$.
(c) Find one example of a zero divisor in $M(2, \mathbb{Z})$.
3. Let R be a commutative ring, $a \in R$, and $I=\{r \in R \mid a r=0\}$.
(a) Prove that I is an ideal of R.
(b) If $R=\mathbb{Z}_{12}$ and $a=3$, find the elements of I and R / I.
(c) Construct the Cayley table for R / I in (b) under multiplication.
4. Let $S=\left\{\left.\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$ and \mathbb{C} be the field of complex numbers.
(a) Prove that S is a subring of $M(2, \mathbb{R})$.
(b) Prove that $\mathbb{C} \approx S$ by defining $\theta(a+b i)=\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$.
5. Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
6. Let $f=x^{4}-x^{2}+2 x-1 \in \mathbb{Z}_{5}$.
(a) Prove that f is reducible in \mathbb{Z}_{5}.
(b) Factor f using irreducible polynomials.
(c) Prove that each factor in (b) is irreducible in \mathbb{Z}_{5}.
7. Let $f=x^{2}+x+2 \in \mathbb{Z}_{3}[x]$ and $F=\mathbb{Z}_{3}[x] /(f)$.
(a) Find all the elements of F.
(b) Prove that F is a field.
(c) Find the order of $(f)+x+2$ in the group F^{*}.
8. Let F be a field with $\chi(F)=2$. Suppose that F has dimension 5 as a vector space over \mathbb{Z}_{2}. Prove that $F^{*}=\langle a\rangle$ for any nonzero element $a \neq 1$.
