PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Abstract Algebra 2

02 - 05 - 2011

Choose any 3 problems from the following 5 problems.

- 1. Let R be a ring.
 - (a) Prove that $S = \{f \in R[x] \mid f = 0 \text{ or } \deg f = 0\}$ is a subring of R[x].
 - (b) Prove that S is not an ideal.
 - (c) Prove that $T = \{f \in R[x] \mid \deg f \leq 1\}$ is not a subring of R[x].
- 2. Let F be a field, so the ring F[x] is commutative with unity.
 - (a) Prove that F[x] is an integral domain.
 - (b) Prove that F[x] is a principal ideal domain.
 - (c) Prove that F[x] is not a field.
- 3. Let F be a field and $f \in F[x]$.
 - (a) Write the definitions of (f) and F[x]/(f).
 - (b) If f is reducible, prove that F[x]/(f) is not a field.
 - (c) If f is irreducible, prove that F[x]/(f) is a field.
- 4. Remember that \mathbb{Z}_n is a field when n is a prime.
 - (a) Write the definition of an irreducible polynomial.
 - (b) Prove that $x^3 5$ is irreducible in $\mathbb{Z}_7[x]$.
 - (c) Prove that $x^2 2$ is reducible in $\mathbb{Z}_{17}[x]$ and factor it.
- 5. Suppose that $a \in \mathbb{R}$, an extension over \mathbb{Q} .
 - (a) Write the definition of the minimal polynomial f of a over \mathbb{Q} .
 - (b) Find f if $a = \sqrt{2} + \sqrt{7}$.
 - (c) Find f if $a = \sqrt{3 + \sqrt{5}}$.

-Amin Witno