Philadelphia University

Department of Basic Sciences

Exam 2

Abstract Algebra 2

02-05-2011

Choose any 3 problems from the following 5 problems.

1. Let R be a ring.
(a) Prove that $S=\{f \in R[x] \mid f=0$ or $\operatorname{deg} f=0\}$ is a subring of $R[x]$.
(b) Prove that S is not an ideal.
(c) Prove that $T=\{f \in R[x] \mid \operatorname{deg} f \leq 1\}$ is not a subring of $R[x]$.
2. Let F be a field, so the ring $F[x]$ is commutative with unity.
(a) Prove that $F[x]$ is an integral domain.
(b) Prove that $F[x]$ is a principal ideal domain.
(c) Prove that $F[x]$ is not a field.
3. Let F be a field and $f \in F[x]$.
(a) Write the definitions of (f) and $F[x] /(f)$.
(b) If f is reducible, prove that $F[x] /(f)$ is not a field.
(c) If f is irreducible, prove that $F[x] /(f)$ is a field.
4. Remember that \mathbb{Z}_{n} is a field when n is a prime.
(a) Write the definition of an irreducible polynomial.
(b) Prove that $x^{3}-5$ is irreducible in $\mathbb{Z}_{7}[x]$.
(c) Prove that $x^{2}-2$ is reducible in $\mathbb{Z}_{17}[x]$ and factor it.
5. Suppose that $a \in \mathbb{R}$, an extension over \mathbb{Q}.
(a) Write the definition of the minimal polynomial f of a over \mathbb{Q}.
(b) Find f if $a=\sqrt{2}+\sqrt{7}$.
(c) Find f if $a=\sqrt{3+\sqrt{5}}$.
