PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 2

20 - 01 - 2009

Part I. Choose one answer.

- 1. Which ring is not a field?
 - (a) Z_{13}
 - (b) $Z_3 \times Z_5$
 - (c) $\{a + b\sqrt{2} \mid a, b \in Q\}$
 - (d) Q
- 2. Which element of Z_{24} is a zero divisor?
 - (a) 5
 - (b) 23
 - (c) 1
 - (d) 15
- 3. Which ring is an integral domain?
 - (a) Z_9
 - (b) $Z_3 \times Z_5$
 - (c) $\{a+bi \mid a,b \in Z\}$
 - (d) $M_2(Z)$

4. Which polynomial is irreducible over Z_{11} ?

- (a) $x^4 + 1$
- (b) $x^2 5$
- (c) $x^2 + x + 4$
- (d) $x^3 2x^2 + 2$

5. Over which field is $x^2 + 1$ reducible?

- (a) R
- (b) Z_3
- (c) Z_7
- (d) Z_{13}

- 6. The ring Q[x] is a field.
 - (a) True
 - (b) False

7. Which element is not algebraic over Q?

- (a) i
- (b) $\sqrt{2} + \sqrt{3}$
- (c) $\sqrt{2} + \sqrt[3]{2}$
- (d) all the above are algebraic
- 8. Given $Q(\sqrt{2}, \sqrt{3}) = Q(a)$. Then a =
 - (a) $\sqrt{6}$
 - (b) $\sqrt{2} + \sqrt{3}$
 - (c) $\sqrt[4]{6}$
 - (d) $\sqrt[3]{2}$
- 9. $[Q(\sqrt[4]{3}, \sqrt[6]{5}):Q] =$
 - (a) 24
 - (b) 12
 - (c) 10
 - (d) 2

10. The factor ring Q[x]/(f) is not a field when

(a) $f(x) = x^2 + 1$ (b) $f(x) = x^2 + 2$ (c) $f(x) = x^2 - 7$ (d) $f(x) = x^2 - x - 2$

Part II. Write complete solution.

- 1. Prove that the ring Z_n is a field if and only if n is a prime number.
- 2. Find the minimal polynomial of $\sqrt{2} + 5\sqrt{7}$ over Q.
- 3. Prove that every ideal in Q[x] is principal.
- 4. Let R be a commutative ring and $a \in R$. Prove that the set $I = \{r \in R \mid ar = 0\}$ is an ideal of R.
- 5. Show that x^3+4x^2+4x+1 is reducible over $Z_5[x]$ and then factor it into irreducible polynomials.

-Amin Witno