Philadelphia University
 Department of Basic Sciences

Final Exam

Abstract Algebra 2
20-01-2009

Part I. Choose one answer.

1. Which ring is not a field?
(a) Z_{13}
(b) $Z_{3} \times Z_{5}$
(c) $\{a+b \sqrt{2} \mid a, b \in Q\}$
(d) Q
2. Which element of Z_{24} is a zero divisor?
(a) 5
(b) 23
(c) 1
(d) 15
3. Which ring is an integral domain?
(a) Z_{9}
(b) $Z_{3} \times Z_{5}$
(c) $\{a+b i \mid a, b \in Z\}$
(d) $M_{2}(Z)$
4. Which polynomial is irreducible over Z_{11} ?
(a) $x^{4}+1$
(b) $x^{2}-5$
(c) $x^{2}+x+4$
(d) $x^{3}-2 x^{2}+2$

5 . Over which field is $x^{2}+1$ reducible?
(a) R
(b) Z_{3}
(c) Z_{7}
(d) Z_{13}
6. The ring $Q[x]$ is a field.
(a) True
(b) False
7. Which element is not algebraic over Q ?
(a) i
(b) $\sqrt{2}+\sqrt{3}$
(c) $\sqrt{2}+\sqrt[3]{2}$
(d) all the above are algebraic
8. Given $Q(\sqrt{2}, \sqrt{3})=Q(a)$. Then $a=$
(a) $\sqrt{6}$
(b) $\sqrt{2}+\sqrt{3}$
(c) $\sqrt[4]{6}$
(d) $\sqrt[3]{2}$
9. $[Q(\sqrt[4]{3}, \sqrt[6]{5}): Q]=$
(a) 24
(b) 12
(c) 10
(d) 2
10. The factor ring $Q[x] /(f)$ is not a field when
(a) $f(x)=x^{2}+1$
(b) $f(x)=x^{2}+2$
(c) $f(x)=x^{2}-7$
(d) $f(x)=x^{2}-x-2$

Part II. Write complete solution.

1. Prove that the ring Z_{n} is a field if and only if n is a prime number.
2. Find the minimal polynomial of $\sqrt{2}+5 \sqrt{7}$ over Q.
3. Prove that every ideal in $Q[x]$ is principal.
4. Let R be a commutative ring and $a \in R$. Prove that the set $I=\{r \in R \mid a r=0\}$ is an ideal of R.
5. Show that $x^{3}+4 x^{2}+4 x+1$ is reducible over $\mathrm{Z}_{5}[x]$ and then factor it into irreducible polynomials.
