PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Midterm Exam Abstract Algebra 2 23–12–	-2008
--	-------

True or false, each problem is worth 2 points.

- ____1) Every ring has a unity.
- ____2) Every ring, if $a \neq 0$ and ab = ac then b = c.
- <u>____3</u>) Every field has no zero divisor.
- _____4) Every integral domain, if $a \neq 0$ then there is b such that ab = 1.
- 5) **Z** is an integral domain.
- (6) \mathbf{Z}_{13} is a field.
- (1) If R, S are fields then $R \times S$ is a field.
 - 8) Every ideal of **Z** is $n\mathbf{Z} = \langle n \rangle$ for some integer *n*.
- ____9) If $\theta : R \to R'$ is a ring homomorphism then ker(θ) is an ideal of R.
- 10) If $\theta : R \to R'$ is a ring homomorphism then $\theta(1) = 1$.

Part 2, each problem is worth 5 points.

- 1. Let $f \in F[x]$ be irreducible.
 - (a) What is the meaning that f is irreducible?
 - (b) Prove that if $f \mid gh$ then $f \mid g$ or $f \mid h$.
- 2. Let f and $g \in F[x]$.
 - (a) If $\alpha \in F$, prove that f(x) is divisible by $x \alpha$ if and only if $f(\alpha) = 0$.
 - (b) If $F = Z_7$, show that $f(x) = x^3 3$ is not divisible by any polynomial of lower degree.
- 3. Let f and $g \in F[x]$.
 - (a) What is the meaning of a greatest common divisor of f and g?
 - (b) If F = Q, evaluate $gcd(x^5 + 4x, x^3 x)$.

-Amin Witno