PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 2

05 - 06 - 2008

There are 9 problems; you choose 6, no more no less.

- 1. Factor $f(x) = x^3 + 4x^2 + 4x + 1$ into irreducible polynomials in $Z_5[x]$.
- 2. Find the minimal polynomial of $\sqrt[3]{\sqrt{2} + \sqrt{3}}$ over Q.
- 3. The polynomial $f(x) = x^2 + 1$ is irreducible in $Z_3[x]$. Use this to construct the multiplication table for F_9 , a field with 9 elements.
- 4. Let R be a commutative ring with unity. Prove that R is a field if and only if R has no ideal except $\{0\}$ and R itself.
- 5. Let K be a field extension over F and $a \in K$. Prove that a is algebraic over F if and only if [F(a) : F] is finite.
- 6. Prove that the characteristic of a finite field exists and is a prime number.
- 7. Let R be a commutative ring and $a \in R$. Prove that the set $I = \{r \in R \mid ar = 0\}$ is an ideal of R.
- 8. Prove that every complex number is algebraic over the field of real numbers.
- 9. Let K be an extension field over F. Suppose that $a \in K$ such that [F(a) : F] = 5. Prove that $F(a^2) = F(a)$.

–Amin Witno