Philadelphia University
 Department of Basic Sciences

Final Exam

Abstract Algebra 2
05-06-2008

There are 9 problems; you choose 6 , no more no less.

1. Factor $f(x)=x^{3}+4 x^{2}+4 x+1$ into irreducible polynomials in $Z_{5}[x]$.
2. Find the minimal polynomial of $\sqrt[3]{\sqrt{2}+\sqrt{3}}$ over Q.
3. The polynomial $f(x)=x^{2}+1$ is irreducible in $Z_{3}[x]$. Use this to construct the multiplication table for F_{9}, a field with 9 elements.
4. Let R be a commutative ring with unity. Prove that R is a field if and only if R has no ideal except $\{0\}$ and R itself.
5. Let K be a field extension over F and $a \in K$. Prove that a is algebraic over F if and only if $[F(a): F]$ is finite.
6. Prove that the characteristic of a finite field exists and is a prime number.
7. Let R be a commutative ring and $a \in R$. Prove that the set $I=\{r \in R \mid a r=0\}$ is an ideal of R.
8. Prove that every complex number is algebraic over the field of real numbers.
9. Let K be an extension field over F. Suppose that $a \in K$ such that $[F(a): F]=5$. Prove that $F\left(a^{2}\right)=F(a)$.
-Amin Witno
