PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 1

Abstract Algebra 2

01 - 04 - 2008

There are 6 problems; you choose 4, no more no less.

- 1. Let R be a ring.
 - (a) What is the meaning of a **subring** of R?
 - (b) What is the meaning that R is a **field**?
 - (c) The set $S = \{a + b\sqrt{5} \mid a, b \in Q\}$ is a subring of Q. Prove that S is a field.
- 2. Let R be a ring.
 - (a) What is the meaning that R is an **integral domain**?
 - (b) Prove that every field is an integral domain.
 - (c) Prove that every finite integral domain is a field.
- 3. Let R and S be two rings.
 - (a) What is the meaning of a homomorphism $\theta : R \to S$?
 - (b) What is the meaning of an **isomorphism** $R \approx S$?
 - (c) If $R \approx S$ and R is an integral domain, prove that S is also an integral domain.
- 4. Let F[x] be a polynomial ring.
 - (a) What is the meaning of an **ideal** of a ring?
 - (b) What is the meaning of a **principal ideal**?
 - (c) Prove that every ideal of F[x] is principal.
- 5. Let f and $g \in F[x]$.
 - (a) What is the meaning that f is **divisible** by g?
 - (b) If $\alpha \in F$, prove that f(x) is divisible by $x \alpha$ if and only if $f(\alpha) = 0$.
 - (c) If $F = Z_7$, show that $f(x) = x^3 3$ is not divisible by any polynomial of lower degree.
- 6. Let f and $g \in F[x]$.
 - (a) What is the meaning of a greatest common divisor of f and g?
 - (b) What is the meaning of the gcd(f, g)?
 - (c) If F = Q, evaluate $gcd(x^5 + 4x, x^3 x)$.

-Amin Witno