Philadelphia University

Department of Basic Sciences

Exam 1

Abstract Algebra 2

01-04-2008

There are 6 problems; you choose 4, no more no less.

1. Let R be a ring.
(a) What is the meaning of a subring of R ?
(b) What is the meaning that R is a field?
(c) The set $S=\{a+b \sqrt{5} \mid a, b \in Q\}$ is a subring of Q. Prove that S is a field.

2 . Let R be a ring.
(a) What is the meaning that R is an integral domain?
(b) Prove that every field is an integral domain.
(c) Prove that every finite integral domain is a field.
3. Let R and S be two rings.
(a) What is the meaning of a homomorphism $\theta: R \rightarrow S$?
(b) What is the meaning of an isomorphism $R \approx S$?
(c) If $R \approx S$ and R is an integral domain, prove that S is also an integral domain.
4. Let $F[x]$ be a polynomial ring.
(a) What is the meaning of an ideal of a ring?
(b) What is the meaning of a principal ideal?
(c) Prove that every ideal of $F[x]$ is principal.
5. Let f and $g \in F[x]$.
(a) What is the meaning that f is divisible by g ?
(b) If $\alpha \in F$, prove that $f(x)$ is divisible by $x-\alpha$ if and only if $f(\alpha)=0$.
(c) If $F=Z_{7}$, show that $f(x)=x^{3}-3$ is not divisible by any polynomial of lower degree.
6. Let f and $g \in F[x]$.
(a) What is the meaning of a greatest common divisor of f and g ?
(b) What is the meaning of the $\operatorname{gcd}(f, g)$?
(c) If $F=Q$, evaluate $\operatorname{gcd}\left(x^{5}+4 x, x^{3}-x\right)$.

