PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Abstract Algebra 2

12 - 6 - 2007

There are 8 problems, you choose 5, no more no less.

- 1. Let R be a commutative ring and $a \in R$. Prove that the set $I = \{r \in R \mid ar = 0\}$ is an ideal of R.
- 2. Prove that the ring Z_n is a field if and only if n is a prime number.
- 3. Show that x^3+4x^2+4x+1 is reducible over $Z_5[x]$ and then factor it into irreducible polynomials.
- 4. Let F be a field and $f \in F[x]$. Prove that F[x]/(f) is a field if and only if f is an irreducible polynomial.
- 5. Find a such that $Q(\sqrt{3}, \sqrt{4}) = Q(a)$. Prove your answer in detail.
- 6. Let $a \in K$, an extension field over F, such that [F(a):F] = 7. Prove that $F(a^3) = F(a)$.
- 7. Prove that $f = x^2 + 1$ is irreducible over Z₃. Then show that $Z_3/(f)$ is the field F_9 and construct its multiplication table.
- 8. The non-zero elements of the field Z_{19} is a cyclic group under multiplication. Find all its generators.

-Amin Witno