Philadelphia University

Department of Basic Sciences

Final Exam

Abstract Algebra 2

There are 8 problems, you choose 5, no more no less.

1. Let R be a commutative ring and $a \in R$. Prove that the set $I=\{r \in R \mid a r=0\}$ is an ideal of R.
2. Prove that the ring Z_{n} is a field if and only if n is a prime number.
3. Show that $x^{3}+4 x^{2}+4 x+1$ is reducible over $\mathrm{Z}_{5}[x]$ and then factor it into irreducible polynomials.
4. Let F be a field and $f \in F[x]$. Prove that $F[x] /(f)$ is a field if and only if f is an irreducible polynomial.
5. Find a such that $\mathrm{Q}(\sqrt{3}, \sqrt{4})=\mathrm{Q}(a)$. Prove your answer in detail.
6. Let $a \in K$, an extension field over F, such that $[F(a): F]=7$. Prove that $F\left(a^{3}\right)=F(a)$.
7. Prove that $f=x^{2}+1$ is irreducible over Z_{3}. Then show that $Z_{3} /(f)$ is the field F_{9} and construct its multiplication table.
8. The non-zero elements of the field Z_{19} is a cyclic group under multiplication. Find all its generators.
