Philadelphia University

Department of Basic Sciences

Exam 2

Abstract Algebra 2

8-5-2007

There are 6 problems, you choose 4, no more no less.

1. Let F be a field. We know that $F[x]$ is a ring. Prove that $F[x]$ is an integral domain, but not a field.
2. (a) What is the meaning of a principal ideal?
(b) Prove that every ideal of $F[x]$ is principal.
3. Let $f, g \in \mathrm{Q}[x]$.
(a) What is the definition of the $\operatorname{gcd}(f, g)$?
(b) What is $\operatorname{gcd}\left(6 x^{4}+2 x^{2}-20, \quad 2 x^{3}-2 x^{2}+4 x-4\right)$?
4. Let $f \in \mathrm{Z}[x]$.
(a) What is the meaning of a primitive polynomial?
(b) Suppose that f is primitive. Prove that if f can be factored in $\mathrm{Q}[x]$ then it can be factored in $\mathrm{Z}[x]$.
5. (a) What is the meaning of an irreducible polynomial?
(b) Prove that $x^{3}-x+1$ is reducible in $\mathrm{Z}_{7}[x]$ and factor it.
(c) Is $7 x^{5}-10 x^{3}+14 x^{2}-4 x+6$ irreducible in $\mathrm{Q}[x]$? Prove it.
6. (a) Prove that $f=x^{3}+2$ is irreducible in $\mathrm{Z}_{7}[x]$.
(b) Prove that every element in the factor ring $\mathrm{Z}_{7}[x] /(f)$ is of the form $a+b x+c x^{2}$ where $a, b, c \in \mathrm{Z}_{7}$.
(c) How many elements are in this factor ring?
(d) What is $\mathrm{Z}_{7}[x] /(f)$ isomorphic to?
