Philadelphia University
 Department of Basic Sciences

Exam 1

Abstract Algebra 2

There are 6 problems, you choose 4, no more no less.

1. (a) What is the definition of an integral domain?
(b) What is the definition of a field?
(c) Prove that a finite integral domain is a field.
(d) Give an example where (c) is false if the set is infinite.
2. Let $\theta: Z_{15} \rightarrow Z_{3}$ be a ring homomorphism given by $\theta\left([a]_{15}\right)=[a]_{3}$.
(a) What is the definition of kernel? Find $\operatorname{ker}(\theta)$.
(b) What is the definition of one-to-one? Is θ one-to-one?
(c) What is the definition of onto? Is θ onto?
(d) What is the definition of a factor ring? Find the elements of the factor ring $Z_{15} / \operatorname{ker}(\theta)$. What is this isomorphic to?
3. Let R be a ring. Prove the following statements, in details.
(a) $0 a=0$ for every $a \in R$.
(b) $a(-b)=-(a b)=(-a) b$ for every $a, b \in R$.
(c) If exists, the element $1 \in R$ is unique.
4. (a) What is the definition of an ideal of a ring?
(b) Prove that if I and J are two ideals of a ring R then the set $I+J=\{i+j \mid$ $i \in I, j \in J\}$ is also an ideal of R.
5. (a) What is the definition of an ideal of a ring?
(b) Prove that if I is an ideal a ring R then the set $J=\{r \in R \mid r a=0 \forall a \in I\}$ is also an ideal of R.
6. (a) What is the definition of the unity of a ring?
(b) What is the definition of a field?
(c) Prove that if F is a field and S is a subfield of F, then the unity of S is the same as the unity of F.
(d) Give an example where (c) is false if F is a ring but not a field.
