Philadelphia University
 Department of Basic Sciences

Final Exam

Abstract Algebra 1
01-02-2016

Note: Incomplete solution will not receive full mark.

1. (7 points) Let G be a group and $x \in G$. Let $S=\{a \in G \mid a x=x a\}$. Prove that S is a subgroup of G.
2. (6 points) Find all the cosets in the group D_{5} with respect to the subgroup $\langle(1,5)(2,4)\rangle$.
3. (7 points) Let $\theta: G \rightarrow G^{\prime}$ be a group homomorphism.
(a) Prove that $\operatorname{ker} \theta$ is a subgroup of G.
(b) Prove that the subgroup $\operatorname{ker} \theta$ is normal.
4. (7 points) Let $G=\left\{x \in \mathbb{Q} \left\lvert\, x \neq \frac{1}{2}\right.\right\}$ and define the binary operation $a \star b=$ $2 a b-a-b+1$ for all $a, b \in G$.
(a) Prove that G is a group.
(b) Prove that the group G is abelian.
5. (6 points) Prove :
(a) $U_{12} \not \approx U_{10}$
(b) $U_{8} \approx U_{12}$
6. (7 points) Let G be a group and $g \in G$. Let $\theta: G \rightarrow G$ such that $\theta(x)=g x g^{-1}$ for all $x \in G$. Prove that θ is an isomorphism.
