Philadelphia University
 Department of Basic Sciences

Final Exam

Abstract Algebra 1
14-01-2013

Part 1. Each problem is worth 4 points.

1. Is the group Z_{12} cyclic or not cyclic? If cyclic, find all the generators.
2. Draw the Cayley table for the factor group $U_{24} /\langle 7\rangle$.
3. Let $\theta: \mathbb{Z}_{12} \rightarrow U_{9}$ be the homomorphism such that $\theta(n)=2^{n}$.
(a) Find $\theta(5)$.
(b) Find $\operatorname{ker}(\theta)$.
(c) Is θ one-to-one? Why or why not?
(d) Is θ an isomorphism? Why or why not?
4. Let S_{6} be the group of permutations with 6 elements. Let $f=(1,3,5,6,4,2)$ and $g=(3,6)(2,4,5) \in S_{6}$.
(a) Find $f \circ g$.
(b) Find $g \circ f$.
(c) Find $g \circ g$.
(d) Find the order of $g \circ f$ in S_{6}.

Part 2. Each problem is worth 8 points.

1. Let $S=\left\{a+b \sqrt{2} \in \mathbb{R}^{*} \mid a, b \in \mathbb{Q}\right\}$. Prove that S is a subgroup of \mathbb{R}^{*}.
2. Let $\theta: G \rightarrow G^{\prime}$ be a group homomorphism. Prove that $\operatorname{ker}(\theta)$ is a normal subgroup of G.
3. Let H be the cyclic subgroup of \mathbb{Z} given by $H=\langle 3\rangle$. Let $\theta: \mathbb{Z} \rightarrow H$ be defined by $\theta(n)=3 n$. Prove that θ is an isomorphism.
